首页> 外文OA文献 >Green cooperative spectrum sensing and scheduling in heterogeneous cognitive radio networks
【2h】

Green cooperative spectrum sensing and scheduling in heterogeneous cognitive radio networks

机译:异构认知无线电网络中的绿色合作频谱感知和调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The motivation behind the cognitive radio networks (CRNs) is rooted in scarcity of the radio spectrum and inefficiency of its management to meet the ever increasing high quality of service demands. Furthermore, information and communication technologies have limited and/or expensive energy resources and contribute significantly to the global carbon footprint. To alleviate these issues, energy efficient and energy harvesting (EEH) CRNs can harvest the required energy from ambient renewable sources while collecting the necessary bandwidth by discovering free spectrum for a minimized energy cost. Therefore, EEH-CRNs have potential to achieve green communications by enabling spectrum and energy self-sustaining networks. In this thesis, green cooperative spectrum sensing (CSS) policies are considered for large scale heterogeneous CRNs which consist of multiple primary channels (PCs) and a large number of secondary users (SUs) with heterogeneous sensing and reporting channel qualities.Firstly, a multi-objective clustering optimization (MOCO) problem is formulated from macro and micro perspectives; Macro perspective partitions SUs into clusters with the objectives: 1) Intra-cluster energy minimization of each cluster, 2) Intra-cluster throughput maximization of each cluster, and 3) Inter-cluster energy and throughput fairness. A multi-objective genetic algorithm, Non-dominated Sorting Genetic Algorithm-II (NSGA-II), is adopted and demonstrated how to solve the MOCO. The micro perspective, on the other hand, works as a sub-procedure on cluster formations given by macro perspective. For the micro perspective, a multihop reporting based CH selection procedure is proposed to find: 1) The best CH which gives the minimum total multi-hop error rate, and 2) the optimal routing paths from SUs to the CHs using Dijkstra\u27s algorithm. Using Poisson-Binomial distribution, a novel and generalized K-out-of-N voting rule is developed for heterogeneous CRNs to allow SUs to have different levels of local detection performance. Then, a convex optimization framework is established to minimize the intra-cluster energy cost subject to collision and spectrum utilization constraints.Likewise, instead of a common fixed sample size test, a weighted sample size test is considered for quantized soft decision fusion to obtain a more EE regime under heterogeneity.Secondly, an energy and spectrum efficient CSS scheduling (CSSS) problem is investigated to minimize the energy cost per achieved data rate subject to collision and spectrum utilization constraints. The total energy cost is calculated as the sum of energy expenditures resulting from sensing, reporting and channel switching operations. Then, a mixed integer non-linear programming problem is formulated to determine: 1) The optimal scheduling subset of a large number of PCs which cannot be sensed at the same time, 2) The SU assignment set for each scheduled PC, and 3) Optimal sensing parameters of SUs on each PC. Thereafter, an equivalent convex framework is developed for specific instances of above combinatorial problem. For the comparison, optimal detection and sensing thresholds are also derived analytically under the homogeneity assumption. Based on these, a prioritized ordering heuristic is developed to order channels under the spectrum, energy and spectrum-energy limited regimes. After that, a scheduling and assignment heuristic is proposed and shown to have a very close performance to the exhaustive optimal solution. Finally, the behavior of the CRN is numerically analyzed under these regimes with respect to different numbers of SUs, PCs and sensing qualities.Lastly, a single channel energy harvesting CSS scheme is considered with SUs experiencing different energy arrival rates, sensing, and reporting qualities. In order to alleviate the half- duplex EH constraint, which precludes from charging and discharging at the same time, and to harvest energy from both renewable sources and ambient radio signals, a full-duplex hybrid energy harvesting (EH) model is developed. After formulating the energy state evolution of half and full duplex systems under stochastic energy arrivals, a convex optimization framework is established to jointly obtain the optimal harvesting ratio, sensing duration and detection threshold of each SU to find an optimal myopic EH policy subject to collision and energy- causality constraints.
机译:认知无线电网络(CRN)背后的动机源于无线电频谱的匮乏及其管理效率低下,无法满足日益增长的高质量服务需求。此外,信息和通信技术具有有限的和/或昂贵的能源,并且对全球碳足迹有重大贡献。为了缓解这些问题,节能和能量收集(EEH)CRN可以从周围的可再生资源中收集所需的能量,同时通过发现自由频谱以最小化能源成本来收集必要的带宽。因此,EEH-CRN具有通过启用频谱和能量自持网络来实现绿色通信的潜力。本文针对由多个主信道(PC)和大量具有异构感知和报告信道质量的辅助用户(SU)组成的大规模异构CRN考虑绿色合作频谱感知(CSS)策略。从宏观和微观角度提出了目标聚类优化(MOCO)问题;宏透视图将SU划分为多个群集,其目标是:1)每个群集的群集内能量最小; 2)每个群集的群集内吞吐量最大化;以及3)群集间能量和吞吐量公平性。采用了多目标遗传算法非支配排序遗传算法-II(NSGA-II)并演示了如何求解MOCO。另一方面,微观视角作为宏观视角给出的集群形成的子过程。从微观角度来看,提出了一种基于多跳报告的信道选择过程,以发现:1)给出最小总多跳错误率的最佳信道,以及2)使用Dijkstra \ u27s算法的从SU到CH的最佳路由路径。使用Poisson-Binomial分布,为异构CRN开发了一种新颖且通用的N-out-N投票规则,以允许SU具有不同级别的本地检测性能。然后,建立一个凸优化框架,以最大程度地减少碰撞和频谱利用约束条件下的集群内部能源成本。同样,代替常规的固定样本量测试,可以考虑使用加权样本量测试进行量化软决策融合,以获得其次,研究了一种能源和频谱高效的CSS调度(CSSS)问题,以在受到冲突和频谱利用约束的情况下,将实现的每个数据速率的能源成本降至最低。总能源成本计算为传感,报告和通道切换操作产生的能源支出之和。然后,提出一个混合整数非线性规划问题来确定:1)无法同时感知的大量PC的最优调度子集; 2)每个调度PC的SU分配集;以及3)每个PC上SU的最佳传感参数。此后,针对上述组合问题的特定实例开发了等效的凸框架。为了进行比较,还可以在同质性假设下通过分析得出最佳检测阈值和传感阈值。基于这些,开发了优先排序的试探法,以在频谱,能量和频谱能量受限的情况下对信道进行排序。此后,提出了一种调度和分配启发式方法,并证明该方法具有与穷举最优解决方案非常接近的性能。最后,针对不同数量的SU,PC和传感质量,在这些制度下对CRN的行为进行了数值分析。最后,考虑了单通道能量收集CSS方案,其中SU经历了不同的能量到达率,传感和报告质量。 。为了减轻半双工EH约束,该约束避免了同时进行充电和放电,并从可再生资源和环境无线电信号中收集能量,开发了全双工混合能量收集(EH)模型。在制定了随机能量到达情况下半双工和全双工系统的能量状态演化之后,建立了一个凸优化框架,以共同获得每个SU的最佳收获率,感知持续时间和检测阈值,从而找到一个受到碰撞和碰撞影响的最优近视EH策略。能量因果约束。

著录项

  • 作者

    Celik, Abdulkadir;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号